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Abstract: This paper introduces and defines two principal rotational methods;the Euler angles and the quaternions
theories with a brief insight into their definitions and algebraic properties. These methods are widely used in
various scientific fields, only marginally in the aircraft industry, the robotics, the quantum mechanics, the electro
mechanics, the cameras systems, the computer graphics, the heavy industry and other. The main part of this paper
is devoted to the derivation of basic equations of the vector rotation around each rotational x, y, z axis using both
rotational methods. Then, the general three-dimensional rotation matrix and the general operator of the quaternion
rotation are derived. Finally the utilization of the matrices and quaternion equations are demonstrated on a simple
example.
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1 Introduction

A large number of scientific disciplines solve the
problem of finding a new object position in space af-
ter elementary transformation, briefly in the aircraft
industry, the robotics, the quantum mechanics, the
electro mechanics, the cameras systems, the computer
graphics, the heavy industry, the topology, the differ-
ential geometry and other. In this publication, we have
focused our attention on two widespread methods;
finding a new object position using rotating matrices
used by Euler angles and the second method is quater-
nion theory. The main part is devoted to the derivation
of basic equations of the vector rotation around each
rotational x, y, z axis using both rotational methods.
The author of the first method of the object rotation
used is Leonhard Euler - L. Euler was a Swiss math-
ematician and physicist, who made key contributions
to the fields of infinitesimal calculus and graph the-
ory. Many developments are attributed to him includ-
ing several designated as the Eulers Theorem. Here,
on of the interests highlighted by M.J. Amaruso states:
Any two independent orthonormal coordinate frames
can be related by a sequence of rotations (not more
than three) about coordinate axes, where no two suc-
cessive rotations may be about the same axis. The
angles of these three rotations are commonly defined

as the Euler angles and the axes of rotation designated
as axes x, y and z. The order in which the axes of
rotation are taken is referred to as the Euler rotation
twelve sequence.
The development of the second used method, quater-
nions, is attributed to W. R. Hamilton and year 1843.
The great mathematician Sir W. R. Hamilton had been
interested in complex numbers in the form a + b i,
where numbers a, b are real and the unit i is imagi-
nary. The rank of complex numbers in the plane is 2.
Some mathematicians sought other mathematical sys-
tems over the complex numbers the rank more than 2.
Sir Hamilton for over 10 years tried to extend concepts
of complex numbers in the plane in order to define a
complex volume by searching for the second imagi-
nary axis. And on 16th October 1843 he invented the
so-called hyper-complex numbers of the rank 4 with 3
imaginary units needed.

2 Euler angles theory
We assume the existence of appropriate coordinate
systems (x, y, z), which is combination of the iner-
tial coordinate system fixed in the Euclidean space
and the body coordinate system attached and moves
together with the moving point in the two- and three-

WSEAS TRANSACTIONS on SYSTEMS Hana Chuda

E-ISSN: 2224-2678 221 Volume 18, 2019



dimensional Euclidean space. Orientation of a mov-
ing point in the two- and three-dimensional Euclidean
space can be described by utilization, three angles
measured from mixed axis of the rotation system
known as Euler angles α, β and γ. The Euler angles
are three angles describing the orientation of the rigid
body with the respect to the given coordinate system.
They can represent the orientation of a general basis
in the three-dimensional linear algebra. Any orien-
tation can be achieved by composing three elemental
rotations, i.e., rotations about the axes of a coordinate
system (about z, y and x axes). The Euler angles can
be defined by three of these rotations. They can also
be defined by the elemental geometry, and the geomet-
rical definition demonstrates that three rotations are
always sufficient to reach any position. A well-known
is a fact that the elementary rotations may be extrinsic
or intrinsic.

The position of the object, according to the given
coordinate system, changes. This change is called the
transformation. The transformation means changing
some position of the object into something else by
applying rules. We can have various types of trans-
formations such as the translation, the scaling and
the rotation. When the transformation takes place
on the two-dimensional plane, it is called the two-
dimensional transformation, for place on the three-
dimensional plane, it is called the three-dimensional
transformation. Transformations play an important
role in the computer graphics to reposition the graph-
ics on the screen and change their size or orientation.

2.1 Two-dimensional rotation
This transformations are working with 2-
coordinations of the objects which are coordination
x and coordination y. The objects can be points, line
and shapes that are presented on those axis. The basic
geometric transformation, the Rotation, is described
as below. An object that is repositioned along a
circular path in the xy-plane called the rotation. The
Figure 2.1 shows that rotation by angle γ. The rota-
tion point or position is description of the origin as A
and r is the constant distance of the point from the
origin, angle δ is the original angular position of the
point from the horizontal and γ is the added rotation
angle. Using the standard trigonometric identities can
be express by the transformed coordinates in term of
the angles γ and δ.
We derive the basic transformation equations for the
position of the rotated point in two-dimensional Eu-
clidean space, from the basics assumptions:

x′ = r cos(γ + δ) = r cos γ cos δ − r sin γ sin δ,
y′ = r sin(γ + δ) = r sin γ cos δ + r cos γ sin δ.

Fig.1 Two-dimensional rotation.

The original coordinates of the points on plane are

x = r cos δ,

y = r sin δ.

Then, the final transformation equation for rotating
the point at position (x, y) through the angle γ for
the finding (x, y) position

x′ = x cos γ − y sin γ,
y′ = x sin γ + y cos γ.

Therefore, the rotated transformation can be formu-
lated into matrix form

[
x′

y′

]
=

[
cos γ − sin γ
sin γ cos γ

]
·
[
x
y

]
. (1)

2.1.1 Homogeneous coordinates
As mentioned above, that the three basic geometric
transformations are represented as the translation, ro-
tation and scaling that are combinations of the multi-
plicative and additive equations. Unfortunately, the
translation is treated differently (as an addition) by
scaling and rotation (as multiplications). As the result,
some difficulty occurs when there is need to combine
more than one matrix for the transformation. There-
fore all three transformations need to be treated in
consistent way by expanding them to 3 × 3 matrix.
Then, the column of the transformation matrix can be
used by the translation term and all transformations
can be expressed as the matrix multiplications by ho-
mogenous coordinate. The homogeneous coordinate
is the standard technique to expand each of the two-
dimensional coordinate position representation (x, y)
to the three-element representation (xh, yh,h) where
the homogeneous parameter h is a nonzero value to
be present in the same coordinate. In order to get two
sets of homogenous coordinates (x, y, h) and (x, y, h)
representing the same point h and h coordinate which
is nonzero, we can normally divide through the coor-
dinate: (x, y, h) and (x, y, h) represent the same point
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as (x/h, y/h, 1) and (x/h, y/h, 1). The numbers
(x/h, y/h) and (x/h, y/h) are called the Cartesian co-
ordinates of the homogeneous point. The points with
h and h = 0 are called points at infinity which will
not appear very often in the discussion. Therefore, the
homogeneous-coordinate approach can be expressed
in two-dimensional rotation as the following matrix
multiplication:

 x′

y′

1

 =

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 ·
 x
y
1

 . (2)

2.2 Three-dimensional rotation
The three-dimensional transformation is additional
method of extending of the two-dimensional transfor-
mation, where z is added on the coordinates. Using
homogeneous coordinates, three-dimensional trans-
formation is presented by the 4 × 4 matrices. Thus,
instead of representing a point as (x, y, z), it repre-
sents it as (x, y, z, w), where two of these quadruples
represent the same point if one is a nonzero multiple
of the other one; the quadruple (0, 0, 0, 0) is not al-
lowed as in two-dimensional transformation.

The three-dimensional coordinate system can be
used in two systems which are right-handed and left-
handed. The right-handed will give the positive rota-
tion from the positive axis towards the origin, a 90◦

counterclockwise rotation will transform one positive
axis into the other one. Whereas,the left-handed will
give the opposite result, which is clockwise negative
rotation from the negative axis towards the origin of
90◦.

Fig.2 The right-handed system.

As already mentioned, any orientation can be
achieved by composing three elemental rota-
tions(about z, y and x axes). The Euler angles can
be defined by three of these rotations. Each of
these rotations is illustrated with the unique rotation
matrix, z-axis rotation with the matrix R(γ)xy, y-axis
rotation with the matrix R(β)xz and x-axis rotation

Fig.3 The left-handed system.

with the matrix R(α)yz .
The following formulas are valid for the right-hand
system, which is the convention used in almost all
engineering and physics disciplines.

Z-axis rotation equations in homogeneous coordi-
nates are easily extended to three dimensions as:


x′

y′

z′

1

 =


cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

 ·

x
y
z
1

 . (3)

Y -axis rotation equations in homogeneous coordi-
nates are in the following form:


x′

y′

z′

1

 =


cosβ 0 sinβ 0
0 1 0 0

− sinβ 0 cosβ 0
0 0 0 1

 ·

x
y
z
1

 . (4)

X-axis rotation equations in homogeneous coordi-
nates can be expressed in the form bellow:


x′

y′

z′

1

 =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 ·

x
y
z
1

 . (5)

2.3 Composition of three-dimensional rota-
tions

The Euler angles are a mechanism for creating a rota-
tion through a sequence of three simpler rotations, we
called them the roll, pitch, and yaw. Objects are first
rotated by the angle γ in the xy-plane, then by angle
β in the zx-plane, and third by the angle α in the yz-
plane. The number γ is called the yaw, β is called the
pitch and α is called the roll. The general matrix T
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consist of from the multiplying simplified rotational
matrices R(γ)xy, R(β)xz and R(α)yz .

T = R(γ)xy ·R(β)zx ·R(α)yz (6)

T =
cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

 ·


cosβ 0 sinβ 0
0 1 0 0

− sinβ 0 cosβ 0
0 0 0 1

 ·

·


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 (7)

T =
cβ cγ −cα sγ + sα sβ cγ sα sγ + cα sβ cγ 0
cβ sγ cα cγ + sα sβ sγ −sα cγ + cα sβ sγ 0
−sβ sα cβ cα cβ 0
0 0 0 1

 ,
where c angle represents cos angle and s angle rep-
resents sin angle. The angle chose from Euler angles
α, β, γ set.

3 Quaternion theory
It was mentioned, that the development of quater-
nions was attributed to W. R. Hamilton on 16th Oc-
tober 1843. He invented the so-called hyper-complex
numbers of the rank 4 with 3 imaginary units needed.

3.1 Algebra of quaternions
3.1.1 Definition of quaternions
The definition of the real quaternion is expressed in
the form

q = q1 + q2 i + q3 j + q4 k (8)

where q1, q2, q3, q4 are real numbers and i, j, k of q
are the imaginary units of quaternions, which satisfy
the equalities

i 2 = j 2 = k 2 = ijk = −1;
ij = −ji = k;
ki = −ik = j;
jk = −kj = i.

(9)

Set of all quaternions are denoted H. The quater-
nion, q ∈ H is defined as a pair (S(q), V (q)), where
S(q) = q1 ∈ R is the scalar part of quaternion q and
V (q) = q2 i + q3 j + q4 k, is the vector part of the
quaternion.

q = S(q) + V (q).

3.1.2 Addition of quaternions
The addition rule for two quaternions is component-
wise addition. This rule preserves the associativity
and the commutativity properties of addition:

p + q = (p1 + p2 i + p3 j + p4 k) + (10)
+ (q1 + q2 i + q3 j + q4 k) = (p1 + q1) +

+ i (p2 + q2) + j (p3 + q3) + k (p4 + q4).

3.1.3 Multiplication of quaternions
The multiplication rule for the quaternions is the same
as for the polynomials, extended by the multiplicative
properties of the elements i, j, k given above. We have:

p · q = (p1 + p2 i + p3 j + p4 k)⊗
⊗ (q1 + q2 i + q3 j + q4 k) =
= (p1q1 − p2q2 − p3q3 − p4q4) +
+ i (p1q2 + p2q1 + p3q4 − p4q3) + (11)
+ j (p1q3 + p3q1 + p4q2 − p2q4) +
+ k (p1q4 + p4q1 + p2q3 − p3q2).

The foregoing term reveals that the commutativity
cannot be preserved. The associativity and the dis-
tributive property over addition are preserved.

3.1.4 Conjugates of quaternions
Consistent with the complex numbers, the definition
of the conjugate operation on a given quaternion q is

q = (q1 + q2 i + q3 j + q4 k) = (12)
= q1 − q2 i− q3 j− q4 k.

As with the complex numbers, note that both (q + q)
and (q · q) are the real numbers. Moreover, defining
the absolute value or the norm the equation is to be

|q| =
√
q12 + q22 + q32 + q42. (13)

Then evidently (q · q) = (q · q) =
∣∣q2∣∣. The conjugate

operation is distributive over addition.

3.1.5 Unit quaternion
The subspace of the unit quaternions, satisfying the
condition |q| = 1, have some important properties. A
trivially hold

|q| = |q| = 1 and q · q = q · q = 1
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And a very useful form is

q = S(q) · cos θ + V (q) · sin θ = cos θ + V (q) · sin θ,

where S(q)=(1, 0, 0, 0) is the scalar part of the unit
quaternion, V(q)=(0, q2 i, q3 j, q4 k) is the vector part of
the unit quaternion and θ is the real number.

3.1.6 Inverse quaternions
We define the inverse quaternion in the following
form:

q−1 =
q1 − q2 i− q3 j− q4 k

|q|2
=

q
|q|2

, (14)

where |q| =
√
q12 + q22 + q32 + q42 is absolute

value of the quaternion and q = q1− q2 i− q3 j− q4 k
is the conjugate quaternion. This expression was in-
troduced by the equation q · q−1 = q−1 · q = 1.

3.1.7 Vector properties of quaternions
The quaternion q = q1+q2 i+q3 j+q4 k can be inter-
preted as the scalar part q1 ∈ R and the vector part
q2 i + q3 j + q4 k, where the elements i, j and k are
given the added geometric interpretation as the unit
vectors along the x, y, z axes. Therefore, the sub-
space of the real quaternions may be regarded as be-
ing equivalent to the real numbers and subspace of the
vector quaternions may be regarded as being equiva-
lent to the ordinary vectors

q ≡ qx i + qy j + qz k. (15)

This attribute is further used in our calculations.

3.1.8 Point as quaternion
If the point P = (x, y, z) is represented as the position
vector, it can be represented as the quaternion

q ≡ 0 + x i + y j + z k. (16)

3.1.9 Product of vector quaternions
The product of two vector quaternions has an interest-
ing property

p · q = (p2 i + p3 j + p4 k) · (q2 i + q3 j + q4 k) =
= −(p2q2 + p3q3 + p4q4) +

+ i (p3q4 − p4q3) + (17)
+ j (p4q2 − p2q4) +
+ k (p2q3 − p3q2) =
= −p · q + p× q,

where ”.” is an operator of the real part of the quater-
nion and ”× ” is an operator of the vector parts of the
quaternions.

3.2 Quaternion rotation
The quaternion, which represents the rotation of the θ
around the axis n = (n1, n2, n3) is given by

q = cos θ + n · sin θ =
= cos θ + (n1 i + n2 j + n3 k) · sin θ, (18)

where q is the unit quaternion, also n is the unit vec-
tor of the unit quaternion q. For any unit quaternion
q = cos θ + n · sin θ and for any vector p ∈ R3 he
action of the operator

Rq(p) = q · p · q (19)

may be interpreted geometrically as the rotation of
the vector p through the angle 2θ around the q as the
axis of the rotation.

Fig.4 Rotation operator geometry.

3.2.1 Quaternion rotation around the z-axis by γ
The rotation axis represents the unit quaternion
n = 0 i + 0 j + 1 k while the rotation operator is given
by

q = cos
γ

2
+ n · sin γ

2
= cos

γ

2
+ k · sin γ

2
.

Using the rotation operator onto any vector
p = x i + y j + z k, p ∈ R3:

Rq(p)z = q · p · q =

= (cos
γ

2
+ k · sin γ

2
) · (xi + yj + zk)⊗

⊗ (cos
γ

2
− k · sin γ

2
) =

= x i cos2
γ

2
+ y j cos2

γ

2
+ z k cos2

γ

2
+
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+ x k i sin
γ

2
cos

γ

2
+ y k j sin

γ

2
cos

γ

2
+

+ z k k sin
γ

2
cos

γ

2
− x i k sin

γ

2
cos

γ

2
−

− y j k sin
γ

2
cos

γ

2
− z k k sin

γ

2
cos

γ

2
−

− x k i k sin2
γ

2
− y k j k sin2

γ

2
−

− z k k k sin2
γ

2
.

Equation of the rotation operator Rq(p)z:

Rq(p)z = i
[
x
(
cos2

γ

2
− sin2

γ

2

)
− 2y sin

γ

2
cos

γ

2

]
+

+ j
[
y
(
cos2

γ

2
− sin2

γ

2

)
+ 2x sin

γ

2
cos

γ

2

]
+

+ k
[
z
(
cos2

γ

2
+ sin2

γ

2

)]
. (20)

3.2.2 Quaternion rotation around the y-axis by β
The rotation axis represents the unit quaternion
n = 0 i + 1 j + 0 k while the rotation operator is given
by

q = cos
β

2
+ n · sin β

2
= cos

β

2
+ j · sin β

2
.

Using the rotation operator onto any vector
p = x i + y j + z k, p ∈ R3:

Rq(p)y = q · p · q =

= (cos
β

2
+ j · sin β

2
) · (xi + yj + zk)⊗

⊗ (cos
β

2
− j · sin β

2
) =

= x i cos2
β

2
+ y j cos2

β

2
+ z k cos2

β

2
+

+ x j i sin
β

2
cos

β

2
+ y j j sin

β

2
cos

β

2
+

+ z j k sin
β

2
cos

β

2
− x i j sin

β

2
cos

β

2
−

− y j j sin
β

2
cos

β

2
− z k j sin

β

2
cos

β

2
−

− x j i j sin2
β

2
− y j j j sin2

β

2
−

− z j k j sin2
β

2
.

Equation of the rotation operator Rq(p)y:

Rq(p)y = i
[
x

(
cos2

β

2
− sin2

β

2

)
+ 2z sin

β

2
cos

β

2

]
+

+ j
[
y

(
cos2

β

2
+ sin2

β

2

)]
+ (21)

+ k
[
z

(
cos2

β

2
− sin2

β

2

)
− 2x sin

β

2
cos

β

2

]
.

3.2.3 Quaternion rotation around the x-axis by α
The rotation axis represents the unit quaternion
n = 1 i + 0 j + 0 k while the rotation operator is given
by

q = cos
α

2
+ n · sin α

2
= cos

α

2
+ i · sin α

2
.

Using the rotation operator onto any vector
p = x i + y j + z k, p ∈ R3:

Rq(p)x = q · p · q =

= (cos
α

2
+ i · sin α

2
) · (xi + yj + zk)⊗

⊗ (cos
α

2
− i · sin α

2
) =

= x i cos2
α

2
+ y j cos2

α

2
+ z k cos2

α

2
+

+ x i i sin
α

2
cos

α

2
+ y i j sin

α

2
cos

α

2
−

− z i k sin
α

2
cos

α

2
− x i i sin

α

2
cos

α

2
−

− y j i sin
α

2
cos

α

2
− z k i sin

α

2
cos

α

2
−

− x i i i sin2
α

2
− y i j i sin2

α

2

− z i k i sin2
α

2
.

Equation of the rotation operator Rq(p)x:

Rq(p)x = i
[
x
(
cos2

α

2
+ sin2

α

2

)]
+ (22)

+ j
[
y
(
cos2

α

2
− sin2

α

2

)
− 2z sin

α

2
cos

α

2

]
+

+ k
[
z
(
cos2

α

2
− sin2

α

2

)
+ 2y sin

α

2
cos

α

2

]
.

3.2.4 Operator of composition
Let qI and qII be two unit quaternions (14). The op-
erator Rq(p)I is first applied to the vector p. Then
we apply the operatorRq(p)II and obtain the operator
Rq(p)I, II . Equivalently, the composition RqI ◦ RqII
of the two operators can be applied:

Rq(Rq(p)I) = qII · (qIp qI) · qII =

= (qIIqI) · p · (qIqII) = (23)
= (qIIqI) · p · (qIIqI) =
= Rq(p)I, II .
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Because qI and qII are the unit quaternions, same as
the product qII · qI . Hence the above equation (23)
describes the rotation operator defining quaternion is
the product of the two quaternions qI and qII . The
following equation describes the operator Rq(p)z y x
for three unit quaternions qz , qy and qx. These quater-
nions represent the unit quaternions rotations around
the belonging axes x, y and z, respectively, for the
general p = x i + y j + z k, p ∈ R3

Rq(p)z y x = (qz qy qx) · p · (qz qy qx) =

= [(cos
γ

2
+ k · sin γ

2
)(cos

β

2
+ j · sin β

2
)⊗

⊗ (cos
α

2
+ i · sin α

2
)]⊗ (24)

⊗ (x i + y j + z k)⊗ [(cos
γ

2
− k · sin γ

2
)⊗

⊗ (cos
β

2
− j · sin β

2
)(cos

α

2
− i · sin α

2
)].

Compound quaternion:

(qz qy qx) =

= (cos
α

2
cos

β

2
cos

γ

2
+ sin

α

2
sin

β

2
sin

γ

2
) +

+ i
[
(sin

α

2
cos

β

2
cos

γ

2
− cos

α

2
sin

β

2
sin

γ

2
)

]
+

+ j
[
(cos

α

2
sin

β

2
cos

γ

2
+ sin

α

2
cos

β

2
sin

γ

2
)

]
+

+ k
[
(cos

α

2
cos

β

2
sin

γ

2
− sin

α

2
sin

β

2
cos

γ

2
)

]
.

Conjugated compound quaternion:

(qz qy qx) =

= (cos
α

2
cos

β

2
cos

γ

2
+ sin

α

2
sin

β

2
sin

γ

2
)−

− i
[
(sin

α

2
cos

β

2
cos

γ

2
− cos

α

2
sin

β

2
sin

γ

2
)

]
−

− j
[
(cos

α

2
sin

β

2
cos

γ

2
+ sin

α

2
cos

β

2
sin

γ

2
)

]
−

− k
[
(cos

α

2
cos

β

2
sin

γ

2
− sin

α

2
sin

β

2
cos

γ

2
)

]
.

The compound and the conjugated compound quater-
nions is put into the relationship for the Rq(p)z y x ;
and after the substitution (25) for a, b, c and d, fol-
lowing is obtained:

a = (sin
α

2
cos

β

2
cos

γ

2
− cos

α

2
sin

β

2
sin

γ

2
),

b = (cos
α

2
sin

β

2
cos

γ

2
+ sin

α

2
cos

β

2
sin

γ

2
), (25)

c = (cos
α

2
cos

β

2
sin

γ

2
− sin

α

2
sin

β

2
cos

γ

2
),

d = (cos
α

2
cos

β

2
cos

γ

2
+ sin

α

2
sin

β

2
sin

γ

2
).

Then the general operator of the quaternion rotation
is in the form:

Rq(p)z y x = i

 x(a2 − b2 − c2 + d2)+
+2y(a · b− c · d)+
+2z(b · d+ a · c)

+ (26)

+ j

 2x(a · b+ c · d)+
+y(−a2 + b2 − c2 + d2)+

+2z(b · c− a · d)

+

+ k

 2x(a · c− b · d)+
+2y(b · c+ a · d)+

+z(−a2 − b2 + c2 + d2)

 .

4 Practical using and conclusions of
submitted methods

In previous sections, both from two principal rota-
tional methods were introduced: one of them is the
rotation defined by the Euler angles represented by the
rotation matrices, method, that is well known and the
other one is defined by the quaternions. In this sec-
tion, we will describe advantages and disadvantages
of these methods. First, the Euler angles are easy to
understand and use, compared to the quaternions and
rotaional matrices, so can be a good choice for a user
interface. Efficient, easy to use with only three com-
ponents, any rotation can be represented. On the other
hand, the most discussed disadvantage is the Gim-
bal lock and uniqueness for the Euler angles calcu-
lations, which miss the inverse rotation in the three-
dimensional space. Overleaf, the time quaternions are
not so easy to be represented mathematically seem to
be complicated. The representation of the rotations
by the quaternions has several advantages over the
other possible representation by the Euler angles. The
parametrization of the rotations using the quaternions
involve only the angle and the axis of the rotation. In
the theory of the quaternions, q and q correspond to
the same rotation. Other advantage of this approach
is that the quaternion rotation is not influenced by the
choice of the coordinate system. Further, the Gimbal
lock problem does not appear in the quaternion rep-
resentation. In conclusion, the quaternions offer the
best choice for representation of rotations.

For a better understanding of this topis an exam-
ple is bring forward. For the purpose of simplicity,
the theory of Euler angles and quaternions is demon-
strated. The calculations are performed with a respect
to the presented theory and the mathematical notation.
Let have two points, for example, B (200; 0; 0) and
C (100; 100; 0) of Euclidean space. We want to ro-
tate them by γ = 10, 02895 degrees around only the
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z-axis. New coordinates, using the theory of Euler an-
gles are presented in the Fig.5 and the results obtained
with quaternions theory, are depicted in the Fig.6.

Fig.5 General rotation using Euler angles around z-
axis by γ angle.

Fig.6 General operator of quaternion rotation around
z-axis rotation by γ angle.
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